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Synopsis 

In this work, we scrutinize the merits of incorporating volatility as an asset class in a 

typical portfolio. We show that by adding volatility exposure through implied volatility, which has 

the benefit of increasing diversification, and volatility risk premium, which gives the portfolio 

return enhancements, the portfolio’s risk-return profile is greatly improved. Furthermore, the 

combined strategies improve portfolio performance in both low-volatility regimes of market calm 

and provide a suitable hedge during high volatility regimes of market crises. The volatility 

strategies above are fairly simple to implement but we need to examine their behaviors more 

closely by analyzing volatility products available to investors. We show that the term structure of 

the VIX has played a large role in the performance of these new products since it has tended to 

be in contango since the inception of the tradable ETFs and ETNs based on volatility futures. 

The close tie between volatility and correlation is also examined while focusing on the most 

recent financial crisis. Through the analysis, we show that adding volatility as an asset class can 

provide much higher risk-adjusted returns than a portfolio consisting of the traditional assets: 

bonds, equities, and commodities. 
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1. Introduction & Literature Review 

1.1. Volatility as an Asset Class 

As financial instruments increase in complexity, investors are constantly in search of 

new assets with which to best optimize the risk return tradeoff. One recent advent has been the 

introduction of volatility as a tradable asset class. Volatility has attractive characteristics that 

make it a welcome addition to an investor’s portfolio. It is well documented that volatility tends to 

be negatively correlated with equity, which immediately demonstrates the mitigation of risk by 

adding volatility in an equity heavy portfolio (Haugen et al., 1991; Glosten et al., 1993). One 

reason attributed to this is the “leverage effect”, which posits that a market downturn lowers the 

equity value thus increasing leverage in the capital structure and therefore volatility (Christie, 

1982; Schwert, 1989; Engle & Ng, 1993). Another theory put forward is the “volatility feedback 

effect” which assumes stock prices incorporate volatility and a fall in volatility lowers the future 

required return on equity causing stock prices to increase (Wu, 2001; Kim et al., 2004). There is 

also the phenomenon of volatility clustering where high volatility days occur together until there 

is a switch to a low volatility period, when similar behavior is displayed (Mandelbrot, 1963). 

Volatility has also been shown to be mean-reverting, which is a very useful attribute when 

attempting to predict future volatility (Engle & Patton, 2001). 

 

Recently, there has been a much wider range of products with which an investor can get 

exposure to volatility. First generation volatility trading was originally based on being long 

options via the Black-Scholes option pricing framework (Black & Scholes, 1973). However, the 

payoff is path-dependent and does not give exposure to purely volatility. The second generation 

of variance products emerged in the 1990s with variance and volatility swaps (Demeterfi et al., 

1999). In conjunction with these derivative products, there was also the introduction of volatility 

indices. Though the indices are not tradable directly, there are futures and other derivative 

products using the volatility index as an underlier, which have been created for investing 

purposes. There are now a plethora of products available that directly or indirectly trade 

volatility, but two main investment strategies have been highlighted: long implied volatility and 

long exposure to volatility risk premium (Signori et al., 2009). 
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Long volatility is an attractive strategy for diversification purposes due to the negative 

correlation between volatility and equity. This allows for portfolios that are equity heavy to 

counteract their losses in case of a market downturn (Daigler & Rossi, 2006). The volatility risk 

premium, defined here as the difference between implied volatility and realized volatility, tends 

to have high returns for its risk (Hafner & Wallmeier, 2007). One explanation for the risk 

premium is the option seller, who is short volatility, has unlimited potential downside, while the 

option buyer, who is long volatility, has the downside capped. Hence, the option seller will 

demand a premium over the realized volatility and the option buyer is paying the premium to 

guard against market shocks (Eraker, 2008). Another reason for this premium, specifically in 

index options, is that the buyer pays extra because they receive protection from sudden 

increases in correlations among the individual constituents (Driessen et al., 2009). A final 

explanation is that the premium is accounted for by an exogenous risk factor and if the volatility 

rises, the risk adjusted statistics of the portfolio itself are less impressive, and as such investors 

will demand a higher return (Carr & Wu, 2009). 

 

1.2. Mean-Variance Optimization 

Modern portfolio theory, pioneered by Harry Markowitz, gives a systematic approach to 

find an allocation which maximizes a portfolio’s risk-adjusted returns. This problem can be 

formulated as follows based on the original theory (Markowitz, 1952): 

max
𝑤

𝜇𝑝 −
𝜎𝑝

2

2𝜆
 

Where 𝜇𝑝  = return of portfolio and 𝜇 = expected return vector 

𝜇𝑝 = 𝑤 ′𝜇 

And where 𝜎𝑝  = standard deviation of portfolio and 𝛺 = variance-covariance matrix of returns 

𝜎𝑝 = 𝑤′𝛺𝑤 

And 𝜆 = risk tolerance 

The equation determines 𝑤 = weight allocation vector 

 

Portfolio optimization using traditional mean-variance techniques may not be enough 

due to the non-normality of returns data. Investor’s preferences for positive skewness can be 

incorporated into the portfolio optimization using goal programming (Lai, 1991; Chunhachinda et 

al., 1997). Similar extensions can be done for higher order moments. 
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Another common pitfall of Markowitz portfolio optimization is that weights may tend to 

the bounds, causing one asset to dominate the portfolio. Rational investors would not make 

such investment decisions and there are a few different ways to ensure that this does not occur. 

By adding some constraint to the weights, the optimization may give more accommodating 

results. The naive “1/N rule”, where the weights are equally weighted, tends to only have a 

slightly higher estimation error and is not consistently outperformed by any of the various 

extensions of the mean-variance framework (DeMiguel et al., 2009). There are many constraints 

that can be used, but it has been shown that imposing a weight constraint is actually equivalent 

to shrinking the variance-covariance matrix (Jagannathan & Ma, 2003). The sample variance-

covariance matrix tends to have documented flaws that cause a high estimation error thus 

causing the mean-variance model to have misleading results. Therefore, another option is to 

use “shrinkage” which pulls in the variance-covariance matrix toward a central target matrix 

(Ledoit & Wolf, 2003) or toward the population mean (Jorion, 1985). 

 

1.3. Volatility Trading 

As mentioned above, volatility trading was first made possible with options, but this was 

soon expanded with the introduction of variance and volatility swaps. The range of products 

increased with conditional variance swaps, corridor variance swaps, and gamma swaps. The 

introduction of the first volatility index, VIX, in 1993 allowed for futures and derivative products to 

be created with the VIX as the underlier. More recently, there has been a boom in the number of 

ETFs and ETNs available to investors, which range from short-term, long-term, inverse, 

leveraged, and long-short strategies. This has made volatility trading very accessible to the 

regular investor and the volume of trading in many of these products have steadily surged. 

 

Since many of these products are based on the VIX, it is important to understand how it 

is calculated. VIX uses near-term and next-term S&P 500 options to find the 30-day expected 

volatility; it is a forward looking measure. The call and put options used must have at least a 

week to expiry and usually have a little less than two months to maturity. A range of these 

options, centered on a strike price below the expected forward level of the S&P 500, are picked 

and weighted according to their premiums. As such, the VIX is an indicator of how much an 

investor is willing to pay for a put or call option on the S&P 500 at a range between the near-
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term and next-term dates and with strikes that are vastly higher and lower than the current 

market price (Chicago Board Options Exchange, 2009). In fact, for a 30-day outlook, the VIX is 

fairly volatile suggesting instability in the measure. The VIX has also been shown to have biases 

as the calculation can vary greatly even in intervals as short as 15 seconds leading to 

alternative measures for volatility (Andersen et al., 2011). 

 

2. Asset Analysis 

2.1. Underlying Data 

We begin by assuming an investment portfolio in the traditional asset classes: bonds, 

equity, and commodities. With the introduction of volatility as an asset class, the portfolio can 

now be enhanced. Two methods to gain exposure to volatility, long volatility (LV) and long 

exposure to volatility risk premium (VRP), are examined (Signori et al., 2009). 

 

For the initial analysis, the data is composed of daily data from June 15, 2004 to 

December 31, 2010. We use the iShares Lehman 7-10 Year Treasury Bond ETF for bonds, the 

S&P 500 for equities, and the S&P GSCI for commodities. The bond data measures public 

obligations of the US Treasury that have a maturity of 7 to 10 years and provides a reasonable 

time horizon for investments. Historically, commodities have been shown to be negatively 

correlated with stocks and bonds and have provided diversification benefits (Gorton & 

Rouwenhorst, 2006). However, recent evidence has shown that commodities are becoming 

increasingly correlated with each other and with various financial assets due to developments in 

securitization (Tang & Xiong, 2010). Therefore, we use the GSCI to see if it mitigates some of 

the diversification benefits from adding volatility exposure. 

 

For long volatility, we use CBOE VIX futures due to the fact that the index itself is not 

tradable. The VIX futures data uses a continuous contract for settlement price. The CBOE VIX 

Premium Strategy Index is used for long exposure to the volatility risk premium. This index, 

VPD, consists of short one-month VIX futures which are marked-to-market daily. After one 

month, new VIX futures are sold. This process helps to limit risk due to a decrease in leverage 

compared to simply shorting VIX futures. 
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These innovative VIX products have been created fairly recently and the volatility 

products mentioned above limit our dataset to only as far back as June 15, 2004. Since our data 

ends in December 31, 2010, a significant portion falls within the global financial crisis and 

recession. As we see in Figure 1 which contains the five assets in the portfolio, this had a major 

impact on price levels. This inherently increases the relevance of examining the volatility, but 

also dictates that the results must be analyzed with this in mind. 

 

Figure 1: Historical levels of standardized asset class proxies (Equities: SP500, Bonds: IEF, 
Commodities: GSCI, Implied Volatility: VX, Volatility Risk Premium: VPD), June 15, 2004 – 
December 31, 2010 

 

2.2. Individual Asset Summary Statistics 

In order to examine the individual assets, we determined a few key measures that would 

need to be calculated. We begin by using the Sharpe Ratio as the primary measure of risk-

adjusted returns (Sharpe, 1966). Although Sharpe has revised the formula to use the time 

series of risk-free rates when calculating the excess returns, we use the original formula and 

make the assumption that the risk-free rate is constant over the time period for simplicity. The 

Sharpe Ratio is given by: 
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𝑆𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑟𝑖 − 𝑟𝑓

𝜎
 

Where 𝑟𝑖  is the return of the asset, 𝑟𝑓  is the risk-free rate, and 𝜎 is the standard deviation of the 

excess returns of the asset 

 

For individual securities, the Treynor Ratio can be more useful than the Sharpe Ratio 

(Treynor, 1965). The Treynor ratio uses the systematic risk as measured by the asset’s beta 

instead of total risk. Hence, it measures the return per volatility added to the portfolio as 

opposed to just the asset’s volatility. The Treynor ratio is given by: 

 

𝑇𝑟𝑒𝑦𝑛𝑜𝑟 𝑅𝑎𝑡𝑖𝑜 =
𝑟𝑖 − 𝑟𝑓

𝛽𝑖
 

Where 𝑟𝑖  is the return of the asset, 𝑟𝑓  is the risk-free rate, and 𝛽𝑖  is the beta of the asset 

 

In order to calculate each asset’s beta, we first have to decide on what is considered the 

market portfolio. We are looking at asset classes and so a market portfolio is not readily 

apparent. Therefore, we use the tangency portfolio which consists of a mix of the five assets as 

a market proxy. 

 

A summary of the individual asset class returns data can be seen in Table 1. A 

precursory look at the Sharpe Ratios shows that during this time period only bonds (0.518) and 

VRP (0.285) had acceptable risk-adjusted returns. The other three assets, LV, equities, and 

commodities, have negative Sharpe ratios and perform worse in that order. The Treynor Ratios 

have the same rankings for asset performance as the Sharpe Ratio. This is not a surprising 

result considering that the equity market took such a nosedive during the crisis. Though LV 

performs poorly, we can expect that most rational investors would probably not remain long 

volatility after VIX had reached its peak levels. The annualized geometric means of the returns 

confirm the attractiveness of the assets as before. The standard deviations for all assets, except 

bonds, are quite large due to the market shocks from the financial crisis. Both volatility 

strategies have relatively large maximum daily gains and losses, which is explained by their 

hypersensitivity to poor market conditions. Interestingly, equities, bonds, and LV all have a 

positive skew. The large positive skew for LV suggests that it hedges the asymmetry that one 

would expect from a crash. Not surprisingly, the kurtosis of every asset is quite high suggesting 

very fat tails. The higher order moments, in addition to the results of the Jarque-Bera Normality 



Rajarshi Das 

7 
 

Test at a 5% significance level demonstrate the data is clearly not normal (Jarque & Bera, 

1987). 

 

Table 1: Summary statistics of daily returns data for the five assets, June 15, 2004 – 
December 31, 2010 

 
Equity Bond Commodity VRP LV 

Daily Geometric Mean 0.0064% 0.0231% -0.0017% 0.0332% 0.0081% 

Annual Geometric Mean 1.62% 6.00% -0.43% 8.74% 2.07% 

Max Daily Gain 11.58% 3.43% 7.48% 17.57% 29.46% 

Max Daily Loss -9.04% -1.78% -8.29% -18.15% -18.07% 

Annual Standard Deviation 22.36% 7.21% 27.67% 22.78% 56.58% 

Skewness 0.014 0.222 -0.109 -0.895 1.204 

Kurtosis 14.017 5.956 4.940 41.860 9.100 

Success Rate 54.97% 51.76% 51.03% 57.82% 44.30% 

Sharpe Ratio -0.028 0.518 -0.097 0.285 -0.003 

Beta 0.285 0.586 0.395 1.336 2.351 

Treynor Ratio -2.229 6.378 -6.788 4.849 -0.080 
Jarque-Bera Normality Test 
(1 = Not Normal) 1 1 1 1 1 

 

2.3. Correlations and Dependencies 

The correlation matrix in Table 2 demonstrates succinctly the diversification benefits of 

these assets. Between the traditional assets, bonds are already negatively correlated with both 

equities (-0.387) and commodities (-0.171). The diversification benefits of LV become 

immediately apparent as it is very negatively correlated with equities (-0.657) and commodities 

(-0.194) which suggest it is a better hedge than just bonds. LV and bonds have a slight positive 

correlation (0.274). The VRP strategy is negatively correlated with bonds (-0.280) and also very 

negatively correlated with the LV strategy (-0.661) suggesting the two volatility strategies are 

good hedges against each other. 

 

Table 2: Correlation matrix of daily returns, June 15, 2004 – December 31, 2010 

 
Equity Bond Commodity VRP LV 

Equity 
 

-0.387 0.309 0.777 -0.657 

Bond 
  

-0.171 -0.280 0.274 

Commodity 
   

0.324 -0.194 

VRP 
    

-0.661 

LV 
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We can expect these highlighted characteristics to play a strong role in the portfolio 

optimization. The LV strategy has the distinct advantage of having high returns when the equity 

market is going down. Due to recent increases in correlation between commodities and equity, 

the diversification benefit of the LV strategy is even greater. On the other hand, the VRP 

strategy has an augmented risk and return compared to equities and commodities. As such, it 

can enhance the returns of the portfolio while also receiving the diversification benefits of the LV 

strategy. This is very apparent in times of crises as the two volatility strategies tend to peak in 

opposite directions. The polarized behavior is quite beneficial to prevent large downside drops 

in portfolio value. 

 

3. Portfolio Construction & Mean-

Variance Optimization 

3.1. Original Dataset 

Using basic Markowitz mean-variance portfolio optimization, we construct four different 

portfolios to explore the effects on the efficient frontier. These portfolios include: 

Portfolio 1 (P1): Bond, Equity, and Commodity 

Portfolio 2 (P2): Bond, Equity, Commodity, and LV 

Portfolio 3 (P3): Bond, Equity, Commodity, and VRP 

Portfolio 4 (P4): Bond, Equity, Commodity, LV, and VRP 

The optimization constrains the weights from -1 to 1, hence allowing short selling. In the initial 

analysis, we examine in-sample evidence and do not include transaction costs or any 

rebalancing.  

 

The benefits of the volatility strategies are immediately apparent by the movements in 

the efficient frontier in Figure 2. Adding the individual volatility strategies show solid 

improvements in the risk and return profile. P2, the LV strategy (red), shows an increase in 

returns while lowering the overall risk. P3, the VRP strategy (cyan) greatly enhances the 
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returns. Both of these were predicted by the summary statistics above. Finally, adding both 

strategies (green) vastly improves the efficient frontier compared with the original portfolio of 

equities, bonds, and commodities. 

 

Figure 2: Mean-variance optimization efficient frontiers of the 4 different portfolios, June 
24, 2004 – December 31, 2010 

 
 

In Table 3, we can see the numerical values behind the risks and returns of both the 

risky and optimal portfolios for each of the asset groupings. The return enhancement of the VRP 

strategy makes the return to risk ratio of the portfolio (0.0545) more attractive than the 

diversification benefit of the LV strategy (0.0510), though both strategies together perform even 

more admirably (0.0670) compared to the original portfolio with no volatility assets (0.0458). 

 

Table 3: Portfolio risks and returns for optimal risky and optimal overall portfolio, June 
24, 2004 – December 31, 2010 

 
P1 P2 P3 P4 

Risky Risk 0.0036 0.0045 0.0035 0.0042 

Risky Return 0.0002 0.0003 0.0003 0.0004 

Risky Fraction 3.65 3.71 4.44 4.95 

Overall Risk 0.0131 0.0165 0.0157 0.0209 

Overall Return 0.0006 0.0009 0.0008 0.0014 

Overall Return / Overall Risk 0.0458 0.0545 0.0510 0.0670 
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Table 4 provides summary statistics on the performance of the portfolios. The Sharpe 

Ratio of the full portfolio with both volatility strategies is the highest (1.105), followed by the VRP 

enhanced portfolio (0.790), LV enhanced portfolio (0.752), and the basic portfolio (0.618). The 

volatility reduction of the portfolios is apparent by the lower, and thus more reasonable, values 

for maximum daily gain and loss. The positive skewness of the portfolio (0.6) with all assets is 

greatly beneficial to the average investor who prefers a positive fat tail. The kurtosis (32.15), on 

the other hand, is extremely high for the portfolio, which leads to some other questions. To 

explore it further, Figure 3 shows the nonparametric density (blue) alongside the normal 

distribution (red) with the same mean and variance, for the full portfolio. The high kurtosis can 

be attributed to the extreme peak of the density, along with the bumps that are visible in the 

tails. This kurtosis risk can be directly attributed to the financial crisis and is an integral part of 

the behavior of the volatility strategies. 

 

Table 4: Summary statistics of daily returns of each portfolio, June 24, 2004 – December 
31, 2010 

 
P1 P2 P3 P4 

Daily Geometric Mean 0.0223% 0.0300% 0.0249% 0.0344% 

Annual Geometric Mean 5.77% 7.86% 6.48% 9.04% 

Max Daily Gain 3.15% 4.95% 2.73% 5.41% 

Max Daily Loss -1.89% -4.27% -1.98% -4.45% 

Annual Standard Deviation 5.69% 7.08% 5.62% 6.69% 

Skewness 0.228 -0.228 0.617 0.600 

Kurtosis 8.515 22.013 7.870 32.150 

Success Rate 53.94% 55.03% 51.27% 52.55% 

Sharpe Ratio 0.618 0.790 0.752 1.015 



Rajarshi Das 

11 
 

Figure 3: Return distributions for full portfolio (P4) – Normal distribution shown in red 
and non-parametric distribution shown in blue, June 24, 2004 – December 31, 2010 

 
 

The allocations in each asset for the portfolios are shown in Table 5. The initial portfolio 

has 13.3% in equities, 84.8% in bonds, and 1.9% in commodities. Inclusion of the VRP strategy 

has the most impact on equities (-10.6%) and commodities (-0.6%) while there is 30.6% in VRP 

and 80.5% in bonds. Since VRP has a high positive correlation with equities and moderate 

positive correlation with commodity, the higher risk-adjusted return makes equities and 

commodities redundant. The portfolio including LV has 23% in equities, 68.3% in bonds, 1.4% in 

commodities, and 7.3% in LV. Since LV was slightly correlated with bonds, the weight shifted 

away from bonds. The full portfolio has low weights in equities (1.1%) and commodities (-1.4%) 

and a more balanced 57.4% in bonds, 32.8% in VRP, and 10.1% in LV. The extreme weights 

calculated by the mean-variance optimization are questionable; it is unlikely that rational 

investors would ignore equities in their portfolio. Possible solutions include shrinking the 

variance-covariance matrix or adding some constraints to the weights. 
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Table 5: Weight allocations of each asset in the portfolios, June 24, 2004 – December 31, 
2010 

 
Equity Bond Commodity VRP LV 

P1 13.3% 84.8% 1.9% 

  P2 -10.6% 80.5% -0.6% 30.6% 

 P3 23.0% 68.3% 1.4% 

 

7.3% 

P4 1.1% 57.4% -1.4% 32.8% 10.1% 

 

3.2. High & Low Volatility Regimes 

Since it is clear from the above analysis that the portfolio with all five assets far 

outperforms the portfolios with a subset of the assets, for the remainder of the paper we will 

focus only on this full portfolio of all assets. We now divide the time period in two, into low 

volatility (pre-crisis) and high volatility (post-crisis) periods. The date used to split the data is 

October 10, 2008 which is picked based on a 50-day simple moving average that marks when 

the VIX jumps above a cutoff of 30. This cutoff has been chosen as being approximately 50% 

greater than the average value for VIX since inception (about 21.06) to mark a very large jump 

into a high volatility regime. We use mean-variance optimization with the assumptions as above 

(constraints -1 to 1, no transaction costs), including all assets, on the low volatility period and 

high volatility period separately. The full period is also included for comparison. 

 

In Table 6, the summary statistics are shown for the 3 portfolios. Immediately, the most 

interesting feature is that the high volatility portfolio performs the best of the three strategies with 

the highest Sharpe Ratio (1.509) and success rate (55.26%). The high volatility regime also 

boasts the lowest maximum daily loss (-2.99%), the highest positive skew (0.923), and lowest 

kurtosis (10.390). This is a surprisingly optimistic result since these are the opposite 

characteristics of a high volatility regime, particularly since this was during the financial crisis. 

Comparatively, in the low volatility regime, the Sharpe ratio is lower (0.912), the portfolio has a 

negative skew (-0.495), and it has higher kurtosis (19.840), all of which are less desirable. 
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Table 6: Summary statistics of daily returns for pre-crisis period, June 24, 2004 – October 
10, 2008, and post-crisis period, October 11, 2008 – December 31, 2010 

 
Low volatility High volatility All 

Daily Geometric Mean 0.0378% 0.0578% 0.0344% 

Annual Geometric Mean 10.00% 15.68% 9.04% 

Max Daily Gain 2.81% 4.35% 5.41% 

Max Daily Loss -4.34% -2.99% -4.45% 

Annual Standard Deviation 7.25% 10.34% 6.69% 

Skewness -0.495 0.923 0.600 

Kurtosis 19.840 10.390 32.150 

Success Rate 53.67% 55.26% 52.55% 

Sharpe Ratio 0.912 1.509 1.015 
 

 

The weight allocations of the assets in the low and high volatility regimes are displayed 

in Table 7. In the pre-crisis period, the weights are as follows: equities (-25.9%), bonds (41%), 

commodities (3.2%), VRP (68.4%), and LV (13.3%). Table 8 contains summary statistics of the 

five assets in the low volatility period, while Table 9 contains the correlation matrix. Once again, 

it is the risk enhancement of the VRP strategy that dominates the portfolio. This makes 

commodities virtually useless and makes equities heavily shorted likely due to their positive 

correlations with VRP. Interestingly, the VRP has a low Sharpe Ratio (-0.095) yet the highest 

Treynor Ratio (20.614). The negative beta for the VRP strategy suggests that it is actually 

reducing risk of the portfolio and explains the apparent contradiction between the two ratios. 

VRP is also positively correlated with equities (0.785) and negatively correlated with bonds (-

0.252) and LV (-0.710) giving it merit as a hedge. This is an unexpected result because in 

general, the VRP strategy is similar to selling insurance (makes small positive returns during low 

volatility and large losses in high volatility) yet its behavior here is the opposite. Both bonds 

(0.348) and LV (0.323) have high Sharpe Ratios explaining the positive allocations in each. 
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Table 7: Weight allocations of each asset in the portfolio for pre-crisis period, June 24, 
2004 – October 10, 2008, and post-crisis period, October 11, 2008 – December 31, 2010 

 
Equity Bond Commodity VRP LV 

Low Volatility -25.9% 41.0% 3.2% 68.4% 13.3% 

High Volatility 25.4% 65.7% -19.9% 21.4% 7.4% 

All 1.1% 57.4% -1.4% 32.8% 10.1% 

 

Table 8: Summary statistics of daily returns data for the five assets during pre-crisis 
period, June 24, 2004 – October 10, 2008 

 
Equity Bond Commodity VRP LV 

Daily Geometric Mean -0.0211% 0.0213% 0.0157% 0.0083% 0.0733% 

Annual Geometric Mean -5.18% 5.52% 4.03% 2.11% 20.29% 

Max Daily Gain 5.42% 1.92% 6.79% 6.15% 29.46% 

Max Daily Loss -8.79% -1.78% -8.29% -8.41% -14.26% 

Annual Standard Deviation 16.56% 6.14% 24.93% 13.53% 52.35% 

Skewness -1.158 -0.025 -0.179 -1.495 1.702 

Kurtosis 13.244 4.912 4.672 22.149 13.270 

Success Rate 54.59% 51.38% 51.38% 57.25% 45.50% 

Sharpe Ratio -0.518 0.348 0.026 -0.095 0.323 

Sortino Ratio -0.036 0.033 0.013 -0.002 0.059 

Beta -0.584 0.430 0.719 -0.062 5.471 

Treynor Ratio 14.689 4.963 0.893 20.614 3.089 
 

Table 9: Correlation matrix of daily returns during pre-crisis period, June 24, 2004 – 
October 10, 2008 

 
Equity Bond Commodity VRP LV 

Equity 
 

-0.389 0.041 0.785 -0.666 

Bond 
  

-0.018 -0.252 0.279 

Commodity 
   

0.097 -0.020 

VRP 
    

-0.710 

LV 
      

It is important to note that the cutoff was picked based on when the VIX index reached a 

certain value (chosen as 30). Hence, the LV strategy (where VIX is the underlier), and possibly 

the VRP strategy, will surely have radically different behaviors on either side of this divide. On 

the other hand, the financial crisis started having effects earlier than the cutoff of October 10, 

2008. Although, it is widely accepted that in October 2008 markets degenerated extremely 

quickly, the various causes that triggered the crisis started at different times (Taylor, 2008). The 

major impacts on the credit and equity markets began in the middle of 2007. In fact the S&P 500 

and commodities both started trending downwards earlier, giving some explanation to their 
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allocations in the portfolio. We examine a different cutoff later in the analysis and get an idea of 

how sensitive portfolio optimization can be to even a slight change in the data. 

 

The post-crisis “recovery” allocations are different: equities (25.4%), bonds (65.7%), 

commodities (-19.9%), VRP (21.4%), and LV (7.4%). Table 10 and Table 11 contain the 

statistics of each asset and the correlation matrix in the high volatility period, respectively. 

Between the high and low volatility period the only correlations that changed were that of 

commodities with the other assets. However, the overall performance of the assets changed 

dramatically. The Sharpe Ratios are much higher now for equities (0.508), bonds (0.696), and 

VRP (0.562) and much lower for commodities (-0.370) and LV (-0.396), which slightly polarizes 

the allocation. This allocation is also interesting due to the fact that the VRP strategy is rising 

steadily while LV is falling steadily as markets slowly crawl back up, yet LV has a positive 

weight. Examining the Treynor Ratios draws the same conclusions. Equities (7.867), Bonds 

(9.354), and VRP (7.900) have high Treynor Ratios and they receive most of the asset 

allocation. The LV strategy has a negative beta yet a positive Treynor Ratio, and as such 

reduces portfolio risk via diversification. Perhaps this explains the positive allocation in LV 

despite its apparent negative returns. The commodities asset class has a negative Treynor 

Ratio and a positive beta, revealing that it had a very poor performance; hence the negative 

weight allocation. 

 

Table 10: Summary statistics of daily returns data for the five assets during post-crisis 
period, October 11, 2008 – December 31, 2010 

 
Equity Bond Commodity VRP LV 

Daily Geometric Mean 0.0577% 0.0244% -0.0509% 0.0706% -0.1155% 

Annual Geometric Mean 15.65% 6.34% -12.04% 19.46% -25.27% 

Max Daily Gain 11.58% 3.43% 7.48% 17.57% 14.34% 

Max Daily Loss -9.04% -1.65% -8.29% -18.15% -18.07% 

Annual Standard Deviation 30.63% 8.98% 32.81% 34.46% 63.97% 

Skewness 0.307 0.338 -0.117 -0.682 0.664 

Kurtosis 9.467 5.263 4.794 22.702 4.790 

Success Rate 55.62% 52.41% 50.27% 58.82% 42.07% 

Sharpe Ratio 0.508 0.696 -0.370 0.562 -0.396 

Sortino Ratio 0.058 0.068 -0.020 0.059 -0.014 

Beta 1.978 0.668 0.839 2.453 -0.937 

Treynor Ratio 7.867 9.354 -14.457 7.900 27.055 
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Table 11: Correlation matrix of daily returns during pre-crisis period, June 24, 2004 – 
October 11, 2008 

 
Equity Bond Commodity VRP LV 

Equity 
 

-0.387 0.534 0.782 -0.676 

Bond 
  

-0.309 -0.296 0.269 

Commodity 
   

0.497 -0.405 

VRP 
    

-0.696 

LV 
      

In the market conditions of a high volatility regime, it is important to make a distinction 

between upside and downside risk. The LV and VRP strategies, especially, peak at the 

beginning of the time period and then slowly trend back towards some central value. The 

Markowitz framework uses symmetric risk, due to its reliance on just the first two moments. 

Similarly, the Sharpe Ratio also, counter-intuitively, treats upside and downside volatility 

equally. The mean-variance optimization has been extended to penalize downside risk more, 

but most of these alternatives have been rejected in favor of the original framework (King, 

1993). Therefore, instead of using an alternative to the Markowitz framework, we aim for a 

simpler objective: calculate a different portfolio performance indicator that incorporates the 

asymmetry of risk. We use the Sortino Ratio which also measures the risk-adjusted return but 

only penalizes downside risk that falls below a certain minimum accepted return (Sortino & 

Price, 1994). The Sortino Ratio is given by: 

 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 =  
𝑟 − 𝑀𝐴𝑅

𝐷𝑅
 

Where 𝑟 is the return of the asset, 𝑀𝐴𝑅 is the minimum acceptable return (we use the risk-free 

rate), and 𝐷𝑅 is downside risk. 

𝐷𝑅 =    𝑀𝐴𝑅 − 𝑥 2𝑓 𝑥 𝑑𝑥
𝑀𝐴𝑅

−∞

 

2

 

And where 𝑓 𝑥  is the probability density function of the returns 

 

However, in the high volatility case, the Sortino Ratio ranking remains the same for the 

assets and doesn’t shed any additional light on the discrepancy between the negative Sortino 

ratio and the positive allocation of the LV strategy, other than LV’s role in risk reduction as 

discussed above. The correlation matrix shows that LV is negatively correlated with Equity, 

Commodities, and VRP so it still maintains its diversification benefit, again explaining the 

positive weight in the strategy. 
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The exogenously chosen cutoff of 30, which split the data at October 10, 2008, did not 

seem to account for a large portion of the financial crisis. Instead, now we choose a divide in the 

data using more of a qualitative approach. VIX demonstrates some of the basic characteristics 

of volatility highlighted above: mean reverting and volatility clustering. Examining the VIX index, 

we can see that around August 2007 the volatility begins increasing leaving behind the mean 

level which is sub-20 during times of market stability and growth. From here on, the volatility 

remains high while demonstrating spikes intermittently. Based on this observation, if we use a 

cutoff of 20, the high volatility regime begins at August 27, 2007. This date also represents one 

of the first large dips in the S&P 500 after about 4 years of strong performance. However, it is 

still a few months until the market takes a complete nosedive. 

 

This aligns with many of the happenings in the market during that time period. Although 

the evidence of a crisis was apparent to those in the financial industry much earlier, there was a 

degree of information asymmetry that kept the public unaware for the most part. We look at a 

general timeline of the crisis to grasp better the forces dictating market movements (Federal 

Reserve Bank of St. Louis, n.d.). The first sign was the bursting of the housing bubble which led 

to a sharp drop in existing home prices throughout the United States. This was followed by a 

collapse in the mortgage industry in the early summer of 2007. This began a long series of 

disappointing announcements by large institutions and corporations ranging from heavy losses 

to filing for bankruptcy that would prevail throughout the crisis. By late summer of 2007, 

everyone was more or less aware of the impending crash. This also coincided with the peak of 

the credit boom and the consequent drop in lending reflected both scale back measures in firms 

and tightening of liquidity (Ivashina & Scharfstein, 2010). The dividing date chosen above, 

August 27, 2007, more or less marks the beginning of a scramble to save the economy. Using 

this new cutoff date, we can perhaps gain different insights into how volatility reacted to the 

happenings during this market turmoil. 

 

Table 12 provides summary statistics for the low and high volatility periods and Table 13 

gives the allocations in each asset class. We compare these results to the previous cutoff and 

find that the low volatility period, with a Sharpe Ratio of 2.143, now outperforms the high 

volatility period (0.992). This is expected because we chose the cutoff so that now the bulk of 

the crisis falls into the latter period. The weight allocations in the low volatility period are no 

longer heavy on shorting equity, but still have a heavy weight in VRP (69.2%), followed by 
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bonds (20.8%), and LV (10%). We have a continuing issue with the unreasonable weights in 

certain assets; this is just not realistic for long term investors. The high volatility period is a lot 

heavier on bonds (69.3%) followed by VRP (28.3%) and LV (8.3%). 

 

Table 12: Summary statistics of daily returns for pre-crisis period, June 24, 2004 – 
August 27, 2007, and post-crisis period, August 28, 2007 – December 31, 2010 

 
Low volatility High volatility All 

Daily Geometric Mean 0.0492% 0.0340% 0.0344% 

Annual Geometric Mean 13.19% 8.96% 9.04% 

Max Daily Gain 2.78% 4.48% 5.41% 

Max Daily Loss -1.81% -3.39% -4.45% 

Annual Standard Deviation 4.42% 8.13% 6.69% 

Skewness 2.230 0.281 0.600 

Kurtosis 25.180 13.443 32.150 

Success Rate 58.06% 53.14% 52.55% 

Sharpe Ratio 2.143 0.992 1.015 
 

Table 13: Weight allocations of each asset in the portfolios for pre-crisis period, June 24, 
2004 – August 27, 2007, and post-crisis period, August 28, 2007 – December 31, 2010 

 
Equity Bond Commodity VRP LV 

Low Volatility -0.6% 20.8% 0.7% 69.2% 10.0% 

High Volatility -3.2% 69.3% -2.7% 28.3% 8.3% 

All 1.1% 57.4% -1.4% 32.8% 10.1% 

 

Similar summaries as above for the low volatility data can be seen in Table 14 and Table 

15. As per the Treynor Ratio and the Sharpe Ratio, VRP performs the best with equities and 

bonds following behind. It is also interesting to note that in this period, the correlation between 

commodities and equities is actually negative (and the correlation between commodities and 

bonds positive). This has been shown in previous literature but is thought to no longer hold as 

strongly. The statistics for high volatility data can be found in Table 16 and Table 17. Bonds and 

VRP have positive Sharpe Ratios, while the remaining asset classes perform poorly judging by 

their risk adjusted returns. The surprisingly high Treynor Ratios for equities and commodities 

along with their negative betas, point out that the assets performed extremely poorly in the high 

volatility regime. Since we know the cause of this high Treynor Ratio and know that these 

assets are generally not used as insurance for market portfolios (which would also have 

negative betas), it is safe to ignore this value and not base any rankings on it. The correlations 

within all asset classes have changed significantly in the crisis period. As before, we see 

evidence of higher absolute correlations as all assets begin to move together as the market 
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tumbles. Both volatility strategies still maintain their unique characteristics (VRP with return 

enhancement and LV with diversification) that make them a beneficial addition to the portfolio 

regardless of market behavior. 

 

While the conclusion we draw on the behavior of volatility is somewhat similar for both 

cutoffs, we also see some unique characteristics caused by the high sensitivity of this type of 

analysis from the change in cutoff date. For an investor who was actively managing a portfolio 

through the crisis, the choice of the divide is crucial. This demonstrates that though we can 

easily analyze the portfolio in hindsight, market timing would have made a large difference in the 

portfolio allocation and subsequent risk management at the time. 

 

Table 14: Summary statistics of daily returns data for the five assets during pre-crisis 
period, June 24, 2004 – August 27, 2007 

 
Equity Bond Commodity VRP LV 

Daily Geometric Mean 0.0321% 0.0179% 0.0196% 0.0528% 0.0373% 

Annual Geometric Mean 8.44% 4.60% 5.08% 14.22% 9.87% 

Max Daily Gain 2.46% 1.37% 6.79% 6.15% 29.46% 

Max Daily Loss -3.47% -1.00% -4.64% -3.64% -14.26% 

Annual Standard Deviation 11.06% 4.84% 22.84% 8.74% 48.51% 

Skewness -0.330 0.053 0.116 0.476 2.276 

Kurtosis 4.768 3.621 3.433 27.704 19.178 

Success Rate 56.08% 50.87% 51.24% 58.93% 44.79% 

Sharpe Ratio 0.428 0.185 0.060 1.202 0.127 

Sortino Ratio 0.040 0.018 0.016 0.104 0.040 

Beta 0.607 0.100 0.401 1.028 1.746 

Treynor Ratio 7.797 8.956 3.414 10.228 3.527 
 

Table 15: Correlation matrix of daily returns during pre-crisis period, June 24, 2004 – 
August 27, 2007 

Table 15 Equity Bond Commodity VRP LV 

Equity 
 

-0.121 -0.021 0.691 -0.592 

Bond 
  

0.049 -0.094 0.101 

Commodity 
   

0.058 -0.022 

VRP 
    

-0.705 

LV 
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Table 16: Summary statistics of daily returns data for the five assets during post-crisis 
period, August 28, 2007 – December 31, 2010 

 
Equity Bond Commodity VRP LV 

Daily Geometric Mean -0.0192% 0.0284% -0.0217% 0.0134% -0.0143% 

Annual Geometric Mean -4.73% 7.42% -5.33% 3.43% -3.54% 

Max Daily Gain 11.58% 3.43% 7.48% 17.57% 17.84% 

Max Daily Loss -9.04% -1.78% -8.29% -18.15% -18.07% 

Annual Standard Deviation 29.33% 8.91% 31.59% 30.68% 63.38% 

Skewness 0.055 0.200 -0.174 -0.711 0.703 

Kurtosis 9.166 4.699 4.781 24.683 5.017 

Success Rate 53.85% 52.66% 50.89% 56.69% 43.91% 

Sharpe Ratio -0.192 0.733 -0.197 0.083 -0.070 

Sortino Ratio -0.004 0.070 -0.004 0.020 0.024 

Beta -0.192 0.916 -0.035 0.995 2.090 

Treynor Ratio 29.330 7.129 178.964 2.548 -2.120 
 

Table 17: Correlation matrix of daily returns during post-crisis period, August 28, 2007 – 
December 31, 2010 

 
Equity Bond Commodity VRP LV 

Equity 
 

-0.443 0.409 0.789 -0.712 

Bond 
  

-0.256 -0.315 0.348 

Commodity 
   

0.400 -0.284 

VRP 
    

-0.710 

LV 
      

3.3. Rebalancing Portfolio 

We now use the same mean-variance framework on a rebalancing portfolio over the 

same dataset (June 15, 2004 to December 31, 2010). The weights will be calculated on a 30 

day piecewise basis and used on the next out of sample period. This will provide a much more 

realistic and robust look at the merits of the volatility strategies, since we no longer use the 

sample data itself for the back-testing. 

 

The rebalancing is done over 30 days, which is actually over a month as only business 

days are counted in the sample. This number has been picked as a starting point and can be 

changed if necessary. The piecewise window refers to the following: the first 30 days will 

provide data for the portfolio optimization. The weights calculated as such will then be used to 

allocate the wealth in the portfolio starting from the 31st to the 60th day. During this period, new 
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weights are also calculated for next period’s wealth allocation. Finally, we also include a blanket 

transaction cost of 0.1% on the wealth of the portfolio. This is meant to cover both commissions 

and slippage in a simple manner without adding extra intricacies at this stage. Transaction costs 

are deducted every 30 days when the portfolio is rebalanced. 

 

Though the mean-variance framework remains, seven different portfolio constraints are 

examined in process. These include long only (constraints of 0% to 100%), 120/20 (constraints 

of -20% to 120%), 130/30, 140/40, 150/50, pure long/short (constraints of -100% to 100%), and 

using Ledoit & Wolf’s shrinkage on the variance-covariance matrix. The shrinkage estimator of 

the covariance is calculated as shown: 

 

𝛴𝑠𝑟𝑖𝑛𝑘𝑎𝑔𝑒 = 𝛿𝐹 +  1 − 𝛿 𝑆 

Where 𝛿 is the shrinkage constant, 𝐹 is the shrinkage target, and 𝑆 is the sample variance-

covariance matrix 

 

The interested reader can find the calculation for the optimal shrinkage constant in the 

original paper (Ledoit & Wolf, 2003). 

 

The above constraints are per asset and not on the actual portfolio as a whole, which 

allows more freedom for the optimizer. As such, the entire portfolio may not be long and short in 

the same ratio as the constraints. 

 

Table 18 consists of the relevant statistics for the various portfolios. Since these tests 

are out of sample, the final wealth of an investor becomes more relevant. This is calculated 

assuming an initial investment of 100. The benefits of shorting are immediately clear by this final 

wealth calculation since all the constraints which included shorting, perform significantly better 

than those without shorting. In fact, looking just at the wealth, the pure long/short performs 

extremely well during the given time period. Figure 4 displays the wealth path of both the long 

only and the pure long/short portfolios for comparison. There is an apparent jump in the wealth 

around August 2008 in the shorting portfolio. 

 

Looking at the weight allocations of the portfolio, it is clear that the success was mainly 

due to polarized weights (fully shorting VRP and commodities) and consequently facing a major 

downturn in those assets in the next period. Shorting provides this benefit by allowing an extra 
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avenue to generate returns. There is also the element of risk to consider since this could just be 

luck. Judging by the Sharpe Ratio, the 140/40 strategy performs the best (1.172). On the other 

hand, the Sortino Ratio is highest for the 150/50 strategy (0.108). Both strategies highlight the 

benefits of shorting in a volatile market without increasing their risk profile too severely. These 

strategies also have a positive skew and a lower kurtosis than the basic, long-only portfolio. The 

shrinkage method seems to have a similar effect as the long only strategy though with even 

poorer results. One reason may be that shrinkage lessens the extremes generated through 

normal mean-variance optimization. The portfolio will not have polarized weight allocations, but 

also cannot make large gains (or losses) as the shorting portfolios do. The shrinkage parameter 

is also extremely low, suggesting the shrinkage matrix didn’t actually change much from the 

sample variance-covariance matrix. 

 

Table 18: Summary statistics of daily returns data for various constraints in a 
rebalancing portfolio, June 15, 2004 – December 31, 2010 

  Long only Full Shorting 120/20 130/30 

Daily Geometric Mean 0.0279% 0.0797% 0.0479% 0.0545% 

Annual Geometric Mean 7.28% 22.24% 12.82% 14.70% 

Max Daily Gain 5.33% 15.15% 4.32% 4.67% 

Max Daily Loss -6.36% -13.92% -4.28% -4.38% 

Annual Standard Deviation 11.11% 18.58% 10.02% 11.02% 

Skewness -0.260 1.102 0.029 0.169 

Kurtosis 18.362 45.098 10.035 11.102 

Success Rate 56.85% 54.94% 55.19% 55.49% 

Sharpe Ratio 0.452 1.076 1.055 1.130 

Sortino Ratio 0.043 0.104 0.096 0.104 

Final Wealth 145.880 308.387 198.280 217.703 

  140/40 150/50 Shrinkage 
 Daily Geometric Mean 0.0605% 0.0660% 0.0270% 
 Annual Geometric Mean 16.47% 18.09% 7.05% 
 Max Daily Gain 6.02% 7.51% 6.02% 
 Max Daily Loss -5.02% -6.50% -9.56% 
 Annual Standard Deviation 12.13% 13.52% 12.97% 
 Skewness 0.285 0.375 -0.643 
 Kurtosis 12.981 15.446 23.677 
 Success Rate 55.31% 55.49% 56.42% 
 Sharpe Ratio 1.172 1.171 0.369 
 Sortino Ratio 0.108 0.108 0.037 
 Final Wealth 237.407 256.652 144.221 
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Figure 4: Wealth path of long/short and long only portfolios, June 15, 2004 – December 
31, 2010 

 
 

3.4. Extended Dataset 

One shortcoming of the analysis above is the limit of the size of the dataset used. To 

examine the unique effects of volatility further, we now extend the dataset to a longer timeframe. 

We focus on just pure volatility which is traded via VIX futures. Since the inception date of the 

VIX futures is March 26, 2004, we extend the data based on its relation to the VIX underlier. 

Table 19 shows linear regression results of the VIX futures on the VIX index. We see that the 

futures track the VIX very closely with an adjusted R square of 0.926. Using the beta 

coefficients, the VIX future time series can be extended all the way back to January 2, 1990. 

 

Table 19: Regression results for VIX futures estimation, June 15, 2004 – December 31, 
2010 

 
Alpha Beta Adjusted R Square 

Coefficient 4.400 0.825 0.926 

t statistic 34.361 150.813 
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A summary of statistics for the individual assets from January 2, 2004 to December 31, 

2010 are seen in Table 20. The results are slightly different than we had in the shortened 

dataset. The main takeaway is the rankings of the asset’s risk adjusted returns based on their 

Sharpe Ratio and Treynor Ratio from highest to lowest: bonds, equities, commodities, and LV. 

The latest financial crisis clearly doesn’t have as much of an effect on equities and commodities, 

both of which now have positive risk adjust returns. The correlation of the asset classes are in 

Table 21. These values are also fairly close to that of the original dataset, although most 

correlations seem to be less extreme (closer to zero). This can also be attributed to the financial 

crisis, where it can be expected that asset classes will increase in correlation towards one (or 

decrease towards negative one) as the markets move drastically in one direction. 

 

Table 20: Summary statistics of daily returns data for the four assets, January 2, 2004 – 
December 31, 2010 

 
Equity Bond Commodity LV 

Daily Geometric Mean 0.0237% 0.0303% 0.0177% 0.0004% 

Annual Geometric Mean 6.14% 7.92% 4.56% 0.11% 

Max Daily Gain 11.58% 6.83% 7.90% 43.44% 

Max Daily Loss -9.04% -5.80% -16.83% -26.16% 

Annual Standard Deviation 18.58% 9.91% 22.12% 76.49% 

Skewness -0.008 0.074 -0.407 1.040 

Kurtosis 12.007 8.653 10.103 9.176 

Success Rate 53.07% 43.66% 51.01% 47.40% 

Sharpe Ratio 0.135 0.432 0.042 -0.046 

Beta 0.645 0.711 0.524 3.917 

Treynor Ratio 3.892 6.027 1.771 -0.901 
Jarque-Bera Normality Test 
(1 = Not Normal) 1 1 1 1 

 

Table 21: Correlation matrix of daily returns, January 2, 2004 – December 31, 2010 

 
Equity Bond Commodity LV 

Equity 
 

-0.122 0.105 -0.713 

Bond 
  

-0.131 0.071 

Commodity 
   

-0.066 

LV 
     

Using the mean-variance framework, we are now able to assess the merits of the 

portfolio with bonds, equities, commodities, and volatility. The results of the portfolio 

optimization with the original dataset are compared to that of the extended dataset in Table 22. 

Overall, the portfolio performs better in the long run with a higher Sharpe Ratio (0.9282). The 
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skewness, though positive as investor’s would prefer, is comparatively less. The extended 

portfolio also has a lower kurtosis. Most importantly, these results show that the benefits of 

including volatility hold in the 20-year investment horizon as well. The weights in each asset are 

shown in Table 23. The weights are now more balanced with a higher allocation in equities 

(41.3%), commodities (6.5%), and LV (10.2%) and a lower allocation in bonds (41.9%). All in all, 

the longer dataset still maintains similar results to before, giving additional credence to adding 

volatility as an asset class. However, there is a degree of moderation in many of the values that 

falls more in line with other empirical studies of long term investment decisions.  

 

Table 22: Summary statistics of daily returns data of extended dataset, January 2, 2004 – 
December 31, 2010 

 
Extended Data Original Data 

Daily Geometric Mean 0.0385% 0.0249% 

Annual Geometric Mean 10.20% 6.48% 

Max Daily Gain 3.48% 2.73% 

Max Daily Loss -2.76% -1.98% 

Annual Standard Deviation 7.07% 5.62% 

Skewness 0.460 0.617 

Kurtosis 6.792 7.870 

Success Rate 52.20% 51.27% 

Sharpe Ratio 0.928 0.752 
 

Table 23: Weight allocations of each asset in extended dataset, January 2, 2004 – 
December 31, 2010 

 
Equity Bond Commodity LV 

Extended Data 41.3% 41.9% 6.5% 10.2% 

Original Data 23.0% 68.3% 1.4% 7.3% 

 

4. Volatility Trading 

4.1. VIX Term Structure 

In order to further examine the merits of volatility as its own asset class, we now turn to 

products available to the average investor. We have already looked at VX futures, which we 

used for our LV and VRP strategies in the portfolio optimization. However, the VIX calculation 
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explained in the introduction demonstrates how convoluted the intuition behind VIX futures can 

be. For example, a three month VIX future is more directly measuring what S&P 500 options 

traders expect for market conditions to be up to five months from now. 

 

As with any futures, traders will be most interested in the roll return and spot return of 

this product. The roll return depends crucially on whether the term structure of VIX 

demonstrates contango or backwardation. In Figure 5, we show the VIX term structure of two 

different dates. On August 3, 2009, the term structure is in contango (blue); it is upward sloping 

(particularly sensitive in the short term) and the futures prices are higher than the spot price. On 

the other hand, the term structure on June 1, 2010 is in backwardation (green). Again the short 

term is much more sensitive, but now the futures prices are lower than the VIX spot price, hence 

a downward slope. The VIX spot price has a high volatility and as such it moves around a great 

deal. These movements and spikes do not usually affect the futures price as much as changes 

in the trend of VIX (high volatility versus low volatility regimes). 

 

Figure 5: VIX Term Structure on August 3, 2009 shown in blue and on June 1, 2010 
shown in green 
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The term structure is generally determined by supply and demand factors of the market. 

But since VIX is not a tradable asset, we have to look at how the volatility is actually being 

traded. The implied volatility for the VIX calculations comes from S&P 500 options. The futures 

of different maturities will reflect the implied volatility of options at their respective maturity. As 

an option nears its expiration date, its theta or time sensitivity increases, and hence its value 

falls continually. A bullish market will have relatively low volatility due to the asymmetry of the 

leverage effect, which is beneficial to the option seller. For this reason, we can expect more 

shorting in short-term options than long-term options. Since option sellers are short volatility, 

this would explain the lower value of short-term volatility futures as seen in contango. Moreover, 

in a bullish market, traders would be willing to pay a premium for volatility futures as it is a 

hedge against possible declines in the market (and increases in volatility): if the market crashes, 

the VIX futures will have a high payoff. This is also in line with the fact that VIX is known to be 

mean reverting. 

 

In contrast, a bearish market will have high volatility, especially as panic hits investors 

causing overreactions. Options investors will now proceed to purchase options close to the 

strike in the short term, as they expect volatility to rise. These options, in particular, are the 

cheapest and have the most sensitivity to their underlier. Since the VIX calculation is based on 

the implied volatility of those short-term options that are close to their strike, it is clear this 

behavior will push the VIX up. This will cause the futures in the short term to be at a premium 

leading to backwardation. In a high volatility regime, with a bearish market, investor’s selling VIX 

futures would expect the mean reverting nature of volatility to bring the VIX back down and 

expect to receive a positive payoff. 

 

To quantify this rationale behind contango and backwardation, we begin by performing a 

linear regression of VIX spot price on future spreads using data from January 2, 1990 and July 

15, 2011. If bullish and bearish markets have a direct effect on the term structure, the 

regression coefficients should reflect this. Figure 6 shows the regression line of VIX versus the 

realized spread between spot and 1 month VIX (calculated as 1 month minus the spot). The 

beta coefficient (-0.501), which can be found in Table 24, is significant and negative. Thus, a 

higher spot VIX (bearish market) leads to a lower, negative spread (backwardation) as we 

described above. In Figure 7 and Table 25, the same results can be drawn for a comparison 

between VIX versus the realized spread between 1 month and 2 month VIX, giving further 

evidence to the argument. Table 26 shows the average realized spread (between spot and 1 
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month VIX) for when VIX is above and below its mean. There is a positive premium when the 

spot VIX is below the mean (and a negative premium when spot VIX is above the mean), 

demonstrating mean reversion. In Table 27, we divide the VIX into smaller bins. We can see 

that the there is a higher degree of backwardation when the VIX is higher and similar high levels 

of contango with lower levels of VIX. As such, a change in the term structure signifies a major 

change in market conditions. 

 

Figure 6: Regression of VIX and realized spread between spot and 1 month VIX, January 
2, 1990 – July 15, 2011 

 
Table 24: Regression results of VIX and realized spread between spot and 1 month VIX, 

January 2, 1990 – July 15, 2011 

 
Alpha Beta 

Coefficient 20.341 -0.501 

t stat 190.927 -22.811 
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Figure 7: Regression of VIX and realized spread between 1 month and 2 month VIX, 
January 2, 1990 – July 15, 2011 

 
Table 25: Regression results of VIX and realized spread between 1 month and 2 month 

VIX, January 2, 1990 – July 15, 2011 

 
Alpha Beta 

Coefficient 20.347 -0.385 

t stat 187.296 -17.176 
 

Table 26: Average realized spread of VIX when above and below mean, January 2, 1990 – 
July 15, 2011 

 
Spot to 1 Month 1 Month to 2 Month 

Less than Mean 0.720 0.436 

Greater Than Mean -1.036 -0.634 
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Table 27: Average realized spread of VIX at different levels, January 2, 1990 – July 15, 
2011 

 
Spot to 1 Month 1 Month to 2 Month 

Less than 15 0.568 0.293 

15 to 20 0.821 0.556 

20 to 25 0.594 0.745 

25 to 30 -1.617 -0.871 

30 to 35 -3.257 -2.433 

35 to 40 -2.912 -3.643 

40 to 45 -5.089 -3.820 

Greater than 45 -6.172 -6.337 
 

4.2. Volatility Futures 

The advent of volatility future ETFs and ETNs have made strategies based on the above 

concepts accessible to average investors. Two of the more popular products are VXX, S&P 500 

VIX Short-Term ETN, and VXZ, S&P 500 VIX Mid-Term ETN shown in Figure 8. Both products 

have been under much scrutiny mainly for their large losses since inception on January 29, 

2009. These losses can be almost directly attributed to the declining volatility levels and the fact 

that the VIX term structure has been in constant contango causing negative roll returns in the 

recent period. Prior to inception, the term structure was in backwardation and would have 

affected the futures with positive roll return. Just as their VIX underlier, these ETNs are a hedge 

against extreme events that are not readily predicted. The largest visible spike in the price is just 

prior to the Greek protests around May 2010. Due to their limited history, it is difficult to estimate 

the degree of upside possible during such rare events but it is clear such products should follow 

market rules of no arbitrage and any apparent “free lunches” are not without subsequent risk. 
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Figure 8: Historical prices of VXX and VXZ, January 29, 2009 – May 27, 2011 

 

4.3. Volatility Conditions 

It is possible to surmise that the recent financial crisis has had a significant impact on the 

data we use, giving more extreme values than expected. Furthermore, examining volatility is 

most crucial during times of market downturns. Figure 9 highlights the key spikes in the VIX and 

relates them to the “black swan” events that caused such extreme movements. From these 

peaks, we can estimate the time it takes for the market to return to “normalcy”, by finding when 

the VIX reverts back to its mean levels. In Table 28, the number of days it takes for the VIX to 

return to its mean value after a crisis is shown. The dates have been selected by when there is 

a peak in the VIX. The average time it takes for a large scale crisis to quell is about 138 

business days or approximately 6 months. It is important to note we are simply measuring the 

speed of mean reversion and this does not necessarily reflect an economic recovery. Naturally, 

the magnitude of the crisis has a clear impact as can be seen by the lengthy recovery of the 

recent financial crisis. The LTCM bailout and the Asian Crisis had lesser impacts on volatility 

probably due to the fact that they were incidents that did not affect the entire US economy 
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directly.  Table 29 shows a similar chart with the average number of days it took for the VIX to 

reach mean levels after hitting a certain percentile. After reaching the 10th percentile, it took 

approximately 349 business days for VIX to return to the mean and when at the 90th percentile, 

the VIX took about 94 business days to bounce back. This demonstrates that high volatility 

appears in spikes but tends to subside quicker than low volatility, where the markets stay calmer 

for longer periods. 

 

Figure 9: VIX and key events leading to large spikes, January 2, 1990 – July 15, 2011 

 
 

Table 28: Speed of mean reversion of VIX for specific events, January 2, 1990 – July 15, 
2011 

 
Time in Days Date VIX 

Asian Crisis 70 October 30, 1997 38.2 

LTCM 53 October 8, 1998 45.74 

September 11 Attacks 114 September 17, 2001 41.76 

Dot Com Crash 190 July 23, 2002 44.92 

Financial Crisis 292 October 24, 2008 79.13 

European Sovereign Debt Crisis 108 May 7, 2010 40.95 

Average 138 
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Table 29: Speed of mean reversion of VIX for percentiles, January 2, 1990 – July 15, 2011 

 
Average Time in Days 

5% 331 

10% 349 

25% 187 

75% 61 

90% 94 

95% 116 
 

When examining volatility conditions, it is also important to examine the correlations in 

the market. Generally, volatility and correlation both increase in tandem. When market 

conditions deteriorate, the volatility increases and all assets have extreme movements in 

tandem, hence increasing correlation. Likewise, as markets return to normal, the correlations 

will decrease as will volatility. Figure 10 shows the rolling 50-day correlations among the various 

asset classes: equities, bonds, commodities, and volatility, from April 1, 2003 (shortly after the 

Dot Com Bubble) to September 22, 2009. We have split the data into two sections with the first 

period (blue) leading up to the financial crisis until October 24, 2008 (determined using the peak 

of the VIX from above) and the second period (red) containing the crisis and subsequent 

recession. The equities & bonds correlation is generally negative and peaks to its lowest value 

at the onset of the crisis. During the high volatility regime, the correlation goes back from its 

extreme toward zero. In contrast, the next two graphs of equities & commodities and bonds & 

commodities, both have just about zero correlation during low volatility periods. However at the 

onset of the crisis, the correlation starts trending towards the extremes and seems to remain 

there at the end of the sample period. This is interesting because even though volatility 

decreases after its peak on October 24, 2008, the correlations continue climbing steadily to their 

extremes which is a behavior not usually seen. The implications for a portfolio containing those 

assets arise from the fact that low correlations near zero moderate the volatility of a portfolio. If 

an investor does not anticipate this structural change to extreme correlations, the volatility of the 

portfolio will increase even further in a high volatility regime. 
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Figure 10: Rolling 50-day correlations between asset classes divided on October 24, 2008 
with pre-crisis shown in blue and post-crisis shown in red, April 1, 2003 – September 22, 

2009 

 
 

The next three graphs show the correlation of LV with each of the assets. This is 

important to examine to see if the crisis has caused any structural changes which could affect 

our portfolio optimization. The correlation with equity remains extremely negative which is a sign 

that LV is an excellent hedge for equities regardless of market condition. This is also expected 
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as the LV strategy is based on the VIX which itself has the S&P 500 as an underlier so the 

dependence is very direct in this case. The correlation between bonds and volatility peaks at the 

crisis but then reverts to zero as before. For volatility and commodities, there also seems to be a 

structural change in the high volatility regime that leads to the two becoming negatively 

correlated. 

 

5. Conclusion 

Recent innovations in volatility products have made volatility trading accessible to most 

investors. These investments in volatility are gaining rapid popularity due to their behaviors and 

benefits in portfolio optimization. Traditional portfolios will generally consist largely of equities 

and bonds along with smaller holdings in other asset classes. When examining the performance 

of these portfolios, investors will concentrate on risk-adjusted returns as well as correlations 

among asset classes and changes in higher-order moments of the portfolio. We demonstrated 

that the inclusion of volatility as an asset class, via long volatility and long volatility risk premium, 

can add both diversification benefits and return enhancements, respectively. The initial analysis 

shows that each volatility strategy alone extends the efficient frontier out, but due to their 

negative correlation with each other, a combination of the two strategies has a significant 

improvement on the efficient frontier.  

 

Dividing the dataset into a low volatility and high volatility regime demonstrates that in 

either period the addition of volatility to the asset allocation is greatly beneficial as can be 

measured by risk-adjusted returns. Using econometric methods to extend the dataset give 

similar results on the advantages of including volatility. Unfortunately, the data is still limited to 

only about 20 years and we cannot expect it to capture all types of “black swan” events which 

reflect the true nature of volatility. 

 

Since there are many new volatility products with a limited history for investors to choose 

from, we showed the importance of understanding the underlying factors. For volatility futures, 

the VIX term structure is crucial due to recent contango that has greatly reduced value of these 

products. We have shown that changes in the term structure are generally a sign of events that 

have significantly changed market conditions. Finally, this analysis has highlighted that high 
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volatility regimes have effects on the correlations among asset classes, which also affects 

portfolio performance. Further research can examine the addition of correlation strategies which 

is often tied closely with volatility. Overall, the benefits of volatility as an asset class are made 

apparent and suggestions are made on factors investors should consider when examining 

volatility products. 
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7. Appendix A 

7.1. Asset Analysis & Mean-Variance Optimization 
%% Asset Analysis/Mean-Variance Optimization 
% S&P500, GSCI, CBOEVPD, CVX, IEF (bonds) 
gsci_d_ts=fints(datenum(GSCI{1}), GSCI{2}, 'GSCI'); 
sp500_d_ts=fints(datenum(SP500_d{1},'yyyymmdd'), SP500_d{2}(:,1), 'SP500'); 
vpd_d_ts=fints(datenum(VPD{1}), VPD{2}, 'VPD'); 
cvx_d_ts=fints(datenum(CVX{1}), CVX{2}, 'VX'); 
ief_d_ts=fints(datenum(IEF{1}), IEF{2}(:,6), 'IEF'); 
rf_d_ts=fints(datenum(RF{1}, 'yyyymmdd'), RF{2}, 'RF'); 

  
% datestr(ftsbound(gsci_d_ts)) 

  
% Figure 1 
temp=mean(sp500_d_ts); 
means(1)=temp.SP500; 
temp=mean(ief_d_ts); 
means(2)=temp.IEF; 
temp=mean(gsci_d_ts); 
means(3)=temp.GSCI; 
temp=mean(vpd_d_ts); 
means(4)=temp.VPD; 
temp=mean(cvx_d_ts); 
means(5)=temp.VX; 

  
temp=std(sp500_d_ts); 
stddevs(1)=temp.SP500; 
temp=std(ief_d_ts); 
stddevs(2)=temp.IEF; 
temp=std(gsci_d_ts); 
stddevs(3)=temp.GSCI; 
temp=std(vpd_d_ts); 
stddevs(4)=temp.VPD; 
temp=std(cvx_d_ts); 
stddevs(5)=temp.VX; 

  
combined_fts=merge(... 
    (sp500_d_ts-means(1))/stddevs(1),... 
    (ief_d_ts-means(2))/stddevs(2),... 
    (gsci_d_ts-means(3))/stddevs(3),... 
    (vpd_d_ts-means(4))/stddevs(4),... 
    (cvx_d_ts-means(5))/stddevs(5),... 
    'DateSetMethod', 'intersection', 'SortColumns', 0); 

  
plot(combined_fts) 
% End Figure 1 

  
combined_fts=merge(sp500_d_ts, ief_d_ts, gsci_d_ts, vpd_d_ts, cvx_d_ts, 

'DateSetMethod', 'intersection', 'SortColumns', 0); 
combined_ret=tick2ret(fts2mat(combined_fts)); 
assets1=combined_ret(:,1:3); %EBC 
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assets2=combined_ret(:,1:4); %EBC + VRP 
assets3=[combined_ret(:,1:3) combined_ret(:,5)]; %EBC + LV 
assets4=combined_ret; %EBC + VRP + LV 

  
temp=ftsbound(combined_fts); 
rf_d_ts=fetch(rf_d_ts, datestr(temp(1)),[],datestr(temp(2)),[],1,'d'); 
rf=(geomean(fts2mat(rf_d_ts)+1)-1); 
annual_rf=(1+rf)^252-1; 

  
% The default lower bound is all zeros (no short-selling), the default 
% upper bound is all ones (any asset may comprise the entire portfolio) 
[risk(:,1), ret(:,1), weights1]=frontcon(mean(assets1), cov(assets1), 

100,[],[-1 -1 -1; 1 1 1]); 
[risk(:,2), ret(:,2), weights2]=frontcon(mean(assets2), cov(assets2), 

100,[],[-1 -1 -1 -1; 1 1 1 1]); 
[risk(:,3), ret(:,3), weights3]=frontcon(mean(assets3), cov(assets3), 

100,[],[-1 -1 -1 -1; 1 1 1 1]); 
[risk(:,4), ret(:,4), weights4]=frontcon(mean(assets4), cov(assets4), 

100,[],[-1 -1 -1 -1 -1; 1 1 1 1 1]); 

  
% Table 5 
% RiskyRisk 
% RiskyReturn 
% RiskyFraction 
% OverallRisk 
% OverallReturn 
[table5(1,1), table5(2,1), riskyweight1, table5(3,1), table5(4,1)... 
    , table5(5,1)]=portalloc(risk(:,1), ret(:,1), weights1, rf, rf); 
[table5(1,2), table5(2,2), riskyweight2, table5(3,2), table5(4,2)... 
    , table5(5,2)]=portalloc(risk(:,2), ret(:,2), weights2, rf, rf); 
[table5(1,3), table5(2,3), riskyweight3, table5(3,3), table5(4,3)... 
    , table5(5,3)]=portalloc(risk(:,3), ret(:,3), weights3, rf, rf); 
[table5(1,4), table5(2,4), riskyweight4, table5(3,4), table5(4,4)... 
    , table5(5,4)]=portalloc(risk(:,4), ret(:,4), weights4, rf, rf); 

  
% Final wealth starting with 100 
sum(riskyweight4*100.*prod(1+combined_ret)); 

  
% Figure 4 
plot(risk(:,1), ret(:,1),'b') 
hold on 
plot(risk(:,2), ret(:,2),'c') %VRP 
plot(risk(:,3), ret(:,3),'r') %LV 
plot(risk(:,4), ret(:,4),'g') 

  
% End Figure 4 

  
% Table 1 
% Col: Equity, Bond, Commodity, VRP, LV 
%Daily geom. mean 
table1(1,:)=(geomean(assets4+1)-1)*100; 
% annual geo mean 
table1(2,:)=(geomean(assets4+1).^252-1)*100; 
% max daily gain 
table1(3,:)=max(assets4)*100; 
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% max daily loss 
table1(4,:)=min(assets4)*100; 
% ann. std dev 
table1(5,:)=std(assets4)*sqrt(252)*100; 
% skewness 
table1(6,:)=skewness(assets4); 
% kurtosis 
table1(7,:)=kurtosis(assets4); 
% success rate 
table1(8,:)=sum(assets4>0)/size(assets4,1)*100; 
% Sharpe Ratio 
table1(9,:)=(table1(2,:)-annual_rf*100)./table1(5,:); 
% Normality test 
for i=1:5 
    table1(12,i)=jbtest(assets4(:,i)); 
end 

  
% Treynor Ratio 
[tp1, tp2, tp3]=frontcon(mean(assets4), cov(assets4),100,[],[0 0 0 0 0; 1 1 1 

1 1]); 
[tp4, tp5, riskyweight5, tp6, tp7, tp8]=portalloc(tp1, tp2, tp3, rf, rf); 
clearvars tp1 tp2 tp3 tp4 tp5 tp6 tp7 tp8; 
tp=(riskyweight5*assets4')'; 
for i=1:5 
    table1(10,i)=regress(assets4(:,i)-rf, tp-rf); 
    table1(11,i)=(table1(2,i)-annual_rf*100)./regress(assets4(:,i)-rf, tp-

rf); 
end 

  
% End Table 1 

  
% Table 2 
table2=corr(assets4); 

  
% More Table 5 
tp=(riskyweight1*assets1')'; 
table6(1,1)=(geomean(tp+1)-1)*100; 
table6(2,1)=(geomean(tp+1).^252-1)*100; 
table6(3,1)=max(tp)*100; 
table6(4,1)=min(tp)*100; 
table6(5,1)=std(tp)*sqrt(252)*100; 
table6(6,1)=skewness(tp); 
table6(7,1)=kurtosis(tp); 
table6(8,1)=sum(tp>0)/size(tp,1)*100; 

  
tp=(riskyweight2*assets2')'; 
table6(1,2)=(geomean(tp+1)-1)*100; 
table6(2,2)=(geomean(tp+1).^252-1)*100; 
table6(3,2)=max(tp)*100; 
table6(4,2)=min(tp)*100; 
table6(5,2)=std(tp)*sqrt(252)*100; 
table6(6,2)=skewness(tp); 
table6(7,2)=kurtosis(tp); 
table6(8,2)=sum(tp>0)/size(tp,1)*100; 
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tp=(riskyweight3*assets3')'; 
table6(1,3)=(geomean(tp+1)-1)*100; 
table6(2,3)=(geomean(tp+1).^252-1)*100; 
table6(3,3)=max(tp)*100; 
table6(4,3)=min(tp)*100; 
table6(5,3)=std(tp)*sqrt(252)*100; 
table6(6,3)=skewness(tp); 
table6(7,3)=kurtosis(tp); 
table6(8,3)=sum(tp>0)/size(tp,1)*100; 

  
tp=(riskyweight4*assets4')'; 
table6(1,4)=(geomean(tp+1)-1)*100; 
table6(2,4)=(geomean(tp+1).^252-1)*100; 
table6(3,4)=max(tp)*100; 
table6(4,4)=min(tp)*100; 
table6(5,4)=std(tp)*sqrt(252)*100; 
table6(6,4)=skewness(tp); 
table6(7,4)=kurtosis(tp); 
table6(8,4)=sum(tp>0)/size(tp,1)*100; 

  
table6(9,:)=(table6(2,:)-annual_rf*100)./table6(5,:); 

  
%NP estimation - Figure 3 
ksdensity(tp); 
hold on 
ix = -6*std(tp):1e-3:6*std(tp); %covers more than 99% of the curve 
iy = pdf('normal', ix, mean(tp), std(tp)); 
plot(ix,iy,'r');  
% 

  
% Wealth graph 
t1=cumprod(assets4(:,1)+1)*100*riskyweight4(1); 
t2=cumprod(assets4(:,2)+1)*100*riskyweight4(2); 
t3=cumprod(assets4(:,3)+1)*100*riskyweight4(3); 
t4=cumprod(assets4(:,4)+1)*100*riskyweight4(4); 
t5=cumprod(assets4(:,5)+1)*100*riskyweight4(5); 
tot=t1+t2+t3+t4+t5; 
plot([t1 t2 t3 t4 t5]) 
area([t1./tot t2./tot t3./tot t4./tot t5./tot]) 

 

7.2. Mean-Variance Optimization – High/Low Volatility 
Regimes 
%% Efficient frontier S&P500, GSCI, CBOEVPD, CVX, IEF (bonds) low/high vol 
gsci_d_ts=fints(datenum(GSCI{1}), GSCI{2}, 'GSCI'); 
sp500_d_ts=fints(datenum(SP500_d{1},'yyyymmdd'), SP500_d{2}(:,1), 'SP500'); 
vpd_d_ts=fints(datenum(VPD{1}), VPD{2}, 'VPD'); 
cvx_d_ts=fints(datenum(CVX{1}), CVX{2}, 'CVX'); 
ief_d_ts=fints(datenum(IEF{1}), IEF{2}(:,6), 'IEF'); 
rf_d_ts=fints(datenum(RF{1}, 'yyyymmdd'), RF{2}, 'RF'); 
vix_d_ts=fints(datenum(VIX2{1}), VIX2{2}(:,4),'VIX'); 
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cutoff=20; 

  
% Volatility Regimes 
VIX2{2}(:,4); 
% Dates of full analysis (based on all time series) 
% 15-Jun-2004 
% 31-Dec-2010 
vix_d_ts=vix_d_ts(3642:5292); 
% 
plot(tsmovavg(vix_d_ts,'s',50)); 
tp=fts2mat(tsmovavg(vix_d_ts,'s',50)); 
tp2=tp>cutoff; 

  
for i=1:size(tp2,1)-1 
    if tp2(i)<tp2(i+1) 
        data1(i)=50; 
    else 
        data1(i)=0; 
    end 
end 
data1(size(tp2,1))=0; 

  
for j=1:size(tp2,1)-1 
    if tp2(j)>tp2(j+1) 
        data2(j)=50; 
    else 
        data2(j)=0; 
    end 
end 
data2(size(tp2,1))=0; 

  

 
tb1=find(data1==50); % low to high 
tb2=find(data2==50); % high to low 
regime=zeros(size(tp,1),2); 
for i=1:size(tb1,2) 
    regime(tb1(i):tb2(i)-1,1)=1; 
end 

 
for i=1:size(tb2,2)-1 
    regime(tb2(i):tb1(i+1)-1,2)=1; 
end 
 

regime(tb2(end):end,2)=1; % started w/ low vol 
regime(1:tb1(1)-1,2)=1; % ended w/ low vol 

  
% column 1 high vol 
% column 2 low vol 

  
% End Vol regimes 

  
% Actual dates 
for i=1:size(tb1,2) 
    tp=fts2mat(vix_d_ts(tb1(i)),1); 
    datestr(tp(1)) 
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end 
for i=1:size(tb2,2) 
    tp=fts2mat(vix_d_ts(tb2(i)),1); 
    datestr(tp(1)) 
end 

  
cutoff_date=733281; %from above 

  
combined_fts=merge(sp500_d_ts, ief_d_ts, gsci_d_ts, vpd_d_ts, cvx_d_ts, 

'DateSetMethod', 'intersection', 'SortColumns', 0); 
combined_ret=tick2ret(fts2mat(combined_fts)); 
assets_all=combined_ret; %BEC + VRP + LV 
assets1=combined_ret(1:tb1(1)-1,:); %low 
assets2=combined_ret(tb1(1)-1:end,:); %high 

  
temp=ftsbound(combined_fts); 
rf_d_ts_tp=fetch(rf_d_ts, datestr(temp(1)),[],datestr(temp(2)),[],1,'d'); 
rf=(geomean(fts2mat(rf_d_ts_tp)+1)-1); 

  
[risk(:,1), ret(:,1), weights1]=frontcon(mean(assets1), cov(assets1), 

100,[],[-1 -1 -1 -1 -1; 1 1 1 1 1]); 
[risk(:,2), ret(:,2), weights2]=frontcon(mean(assets2), cov(assets2), 

100,[],[-1 -1 -1 -1 -1; 1 1 1 1 1]); 
[risk(:,3), ret(:,3), weights3]=frontcon(mean(assets_all), cov(assets_all), 

100,[],[-1 -1 -1 -1 -1; 1 1 1 1 1]); 
 

% RiskyRisk 
% RiskyReturn 
% RiskyFraction 
% OverallRisk 
% OverallReturn 
[table5(1,1), table5(2,1), riskyweight1, table5(3,1), table5(4,1)... 
    , table5(5,1)]=portalloc(risk(:,1), ret(:,1), weights1, rf, rf); 
[table5(1,2), table5(2,2), riskyweight2, table5(3,2), table5(4,2)... 
    , table5(5,2)]=portalloc(risk(:,2), ret(:,2), weights2, rf, rf); 
[table5(1,3), table5(2,3), riskyweight3, table5(3,3), table5(4,3)... 
    , table5(5,3)]=portalloc(risk(:,3), ret(:,3), weights3, rf, rf); 

  
% final wealth 
wealth=sum(riskyweight1*100.*prod(1+combined_ret(1:tb1(1)-1,:))) 
wealth=sum(riskyweight2*wealth.*prod(1+combined_ret(tb1(1)-1:end,:))) 

  
temp=ftsbound(combined_fts); 
tp=fts2mat(vix_d_ts(tb1(i)),1); 
rf_d_ts_tp=fetch(rf_d_ts, datestr(temp(1)),[],datestr(cutoff_date),[],1,'d'); 
rf=(geomean(fts2mat(rf_d_ts_tp)+1)-1); 
annual_rf(1)=(1+rf)^252-1; 
rf_d_ts_tp=fetch(rf_d_ts, datestr(cutoff_date),[],datestr(temp(2)),[],1,'d'); 
rf=(geomean(fts2mat(rf_d_ts_tp)+1)-1); 
annual_rf(2)=(1+rf)^252-1; 
rf_d_ts_tp=fetch(rf_d_ts, datestr(temp(1)),[],datestr(temp(2)),[],1,'d'); 
rf=(geomean(fts2mat(rf_d_ts_tp)+1)-1); 
annual_rf(3)=(1+rf)^252-1; 

  
tp=(riskyweight1*assets1')'; 



Rajarshi Das 

46 
 

table6(1,1)=(geomean(tp+1)-1)*100; 
table6(2,1)=(geomean(tp+1).^252-1)*100; 
table6(3,1)=max(tp)*100; 
table6(4,1)=min(tp)*100; 
table6(5,1)=std(tp)*sqrt(252)*100; 
table6(6,1)=skewness(tp); 
table6(7,1)=kurtosis(tp); 
table6(8,1)=sum(tp>0)/size(tp,1)*100; 
table6(9,1)=(table6(2,1)-annual_rf(1)*100)./table6(5,1); 

  
tp=(riskyweight2*assets2')'; 
table6(1,2)=(geomean(tp+1)-1)*100; 
table6(2,2)=(geomean(tp+1).^252-1)*100; 
table6(3,2)=max(tp)*100; 
table6(4,2)=min(tp)*100; 
table6(5,2)=std(tp)*sqrt(252)*100; 
table6(6,2)=skewness(tp); 
table6(7,2)=kurtosis(tp); 
table6(8,2)=sum(tp>0)/size(tp,1)*100; 
table6(9,2)=(table6(2,2)-annual_rf(2)*100)./table6(5,2); 

  
tp=(riskyweight3*assets_all')'; 
table6(1,3)=(geomean(tp+1)-1)*100; 
table6(2,3)=(geomean(tp+1).^252-1)*100; 
table6(3,3)=max(tp)*100; 
table6(4,3)=min(tp)*100; 
table6(5,3)=std(tp)*sqrt(252)*100; 
table6(6,3)=skewness(tp); 
table6(7,3)=kurtosis(tp); 
table6(8,3)=sum(tp>0)/size(tp,1)*100; 
table6(9,3)=(table6(2,3)-annual_rf(3)*100)./table6(5,3); 

  
%Table 8 - low vs high vol asset stats 
% Col: Equity, Bond, Commodity, VRP, LV 
MAR=(1+annual_rf(1))^(1/252)-1; 
table8a(1,:)=(geomean(assets1+1)-1)*100; 
table8a(2,:)=(geomean(assets1+1).^252-1)*100; 
table8a(3,:)=max(assets1)*100; 
table8a(4,:)=min(assets1)*100; 
table8a(5,:)=std(assets1)*sqrt(252)*100; 
table8a(6,:)=skewness(assets1); 
table8a(7,:)=kurtosis(assets1); 
table8a(8,:)=sum(assets1>0)/size(assets1,1)*100; 
table8a(9,:)=(table8a(2,:)-annual_rf(1)*100)./table8a(5,:); 
table8a(10,:)=(mean(assets1)-MAR)./sqrt(lpm(assets1,MAR,2)); 

  
% Treynor Ratio 
rf=MAR; 
[tp1, tp2, tp3]=frontcon(mean(assets1), cov(assets1),100,[],[0 0 0 0 0; 1 1 1 

1 1]); 
[tp4, tp5, riskyweight_tp, tp6, tp7, tp8]=portalloc(tp1, tp2, tp3, rf, rf); 
clearvars tp1 tp2 tp3 tp4 tp5 tp6 tp7 tp8; 
tp=(riskyweight_tp*assets1')'; 
for i=1:5 
    table8a(11,i)=regress(assets1(:,i)-rf, tp-rf); 
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    table8a(12,i)=(table8a(2,i)-annual_rf(1)*100)./regress(assets1(:,i)-rf, 

tp-rf); 
end 

  
MAR=(1+annual_rf(2))^(1/252)-1; 
table8b(1,:)=(geomean(assets2+1)-1)*100; 
table8b(2,:)=(geomean(assets2+1).^252-1)*100; 
table8b(3,:)=max(assets2)*100; 
table8b(4,:)=min(assets2)*100; 
table8b(5,:)=std(assets2)*sqrt(252)*100; 
table8b(6,:)=skewness(assets2); 
table8b(7,:)=kurtosis(assets2); 
table8b(8,:)=sum(assets2>0)/size(assets2,1)*100; 
table8b(9,:)=(table8b(2,:)-annual_rf(2)*100)./table8b(5,:); 
table8b(10,:)=(mean(assets2)-MAR)./sqrt(lpm(assets2,MAR,2)); 

  
% Treynor Ratio 
rf=MAR; 
[tp1, tp2, tp3]=frontcon(mean(assets2), cov(assets2),100,[],[0 0 0 0 0; 1 1 1 

1 1]); 
[tp4, tp5, riskyweight_tp, tp6, tp7, tp8]=portalloc(tp1, tp2, tp3, rf, rf); 
clearvars tp1 tp2 tp3 tp4 tp5 tp6 tp7 tp8; 
tp=(riskyweight_tp*assets2')'; 
for i=1:5 
    table8b(11,i)=regress(assets2(:,i)-rf, tp-rf); 
    table8b(12,i)=(table8b(2,i)-annual_rf(2)*100)./regress(assets2(:,i)-rf, 

tp-rf); 
end 

  
% End table 8 

 

7.3. Mean-Variance Optimization – Rebalancing 
%% Efficient frontier S&P500, GSCI, CBOEVPD, CVX, IEF (bonds) w/ rebalancing 
gsci_d_ts=fints(datenum(GSCI{1}), GSCI{2}, 'GSCI'); 
sp500_d_ts=fints(datenum(SP500_d{1},'yyyymmdd'), SP500_d{2}(:,1), 'SP500'); 
vpd_d_ts=fints(datenum(VPD{1}), VPD{2}, 'VPD'); 
cvx_d_ts=fints(datenum(CVX{1}), CVX{2}, 'CVX'); 
ief_d_ts=fints(datenum(IEF{1}), IEF{2}(:,6), 'IEF'); 
rf_d_ts=fints(datenum(RF{1}, 'yyyymmdd'), RF{2}, 'RF'); 
vix_d_ts=fints(datenum(VIX2{1}), VIX2{2}(:,4),'VIX'); 

  
combined_fts=merge(sp500_d_ts, ief_d_ts, gsci_d_ts, vpd_d_ts, cvx_d_ts, 

'DateSetMethod', 'intersection', 'SortColumns', 0); 
combined_ret=tick2ret(fts2mat(combined_fts)); 

  
rbf=30; % number of days before rebalancing, rebalance factor 
combined_fts=combined_fts(2:end); 
tc=.001; % .01% transaction costs for commission and slippage 

  
% Dates 
all_dates=fts2mat(combined_fts,1); 
all_dates=all_dates(:,1); 
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n=7; 
wealth=zeros(size(combined_ret,1)/rbf,7); 
MAR=8.8531e-005;  

  
% Change constraints below as necessary 
table=zeros(5,size(combined_ret,1)/rbf); 
riskyweights=zeros(size(combined_ret,1)/rbf, 5); 
period_ret=zeros(size(combined_ret,1)/rbf, 5); 

  

  
for i=1:size(combined_ret,1)/rbf 
    dates(i,1) = all_dates((i-1)*rbf+1); 
    assets=combined_ret((i-1)*rbf+1:i*rbf,:); 
    period_ret(i,:)=prod(1+assets); 
    [risk(:,i), ret(:,i), weights]=frontcon(mean(assets), cov(assets), 

100,[],[0 0 0 0 0; 1 1 1 1 1]); 

     
    temp=ftsbound(combined_fts((i-1)*rbf+1:i*rbf)); 
    tp=fetch(rf_d_ts, datestr(temp(1)),[],datestr(temp(2)),[],1,'d'); 
    if (geomean(fts2mat(tp)+1)-1)~=0 
        rf=(geomean(fts2mat(tp)+1)-1); 
    end 

     
    [table(1,i), table(2,i), riskyweights(i,:), table(3,i), table(4,i)... 
    , table(5,i)]=portalloc(risk(:,i), ret(:,i), weights, rf, rf); 
    if i==1 
        wealth(i,1)=100; 
    else 
        wealth(i,1)=sum(riskyweights(i-1,:)*wealth(i-

1,1).*period_ret(i,:))*(1-tc); 
    end 
end 

  
clearvars tp; 

  
% analysis 
for i=1:size(combined_ret,1)/rbf 
    tb((i-1)*rbf+1:i*rbf,:)=repmat(riskyweights(i,:),rbf,1); 
end 
tp=sum(tb(1:end-rbf,:).*combined_ret(rbf+1:end,:),2); 

  
temp=ftsbound(combined_fts); 
rf_d_ts=fetch(rf_d_ts, datestr(temp(1)),[],datestr(temp(2)),[],1,'d'); 
rf=(geomean(fts2mat(rf_d_ts)+1)-1); 
annual_rf=(1+rf)^252-1; 

  
table6(1,1)=(geomean(tp+1)-1)*100; 
table6(2,1)=(geomean(tp+1).^252-1)*100; 
table6(3,1)=max(tp)*100; 
table6(4,1)=min(tp)*100; 
table6(5,1)=std(tp)*sqrt(252)*100; 
table6(6,1)=skewness(tp); 
table6(7,1)=kurtosis(tp); 
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table6(8,1)=sum(tp>0)/size(tp,1)*100; 
table6(9,1)=(table6(2,1)-annual_rf*100)./table6(5,1); 
table6(10,1)=(mean(tp)-MAR)/sqrt(lpm(tp,MAR,2)); 
table6(11,1)=wealth(end,1); 

 

7.4. Regime Varying Correlation Plots 
%% Rolling window correlation 
combined_fts=merge(sp500_d_ts, ief_d_ts, gsci_d_ts, vix_d_ts, 

'DateSetMethod', 'intersection', 'SortColumns', 0); 
combined_fts=fetch(combined_fts, 

datestr(731672),[],datestr(734038),[],1,'d'); 
combined_ret=tick2ret(fts2mat(combined_fts)); 
%01-Apr-2003 to 22-Sep-2009 
%after dot com 
dates=ftsbound(combined_fts); 
start=dates(1); 
ending=dates(2); 

  
% assuming financial crisis began oct 24, 2008 
clf 
cut=1367; 

  
window=100; 
cut=cut-window-1; 
corr_mat=zeros(size(combined_ret,1)-window+1,6); 
for i=1:size(combined_ret,1)-window+1 
    tp=corr(combined_ret(i:i+window-1,:)); 
    corr_mat(i,:)=[tp(1,2) tp(1,3) tp(2,3) tp(1,4) tp(2,4) tp(3,4)]; 
end 

  
names={'equity & bond'; 
    'equity & commodity'; 
    'bond & commodity'; 
    'equity & volatility'; 
    'bond & volatility'; 
    'commodity & volatility'}; 
for i=1:size(corr_mat,2) 
    subplot(3,2,i) 
    p1=plot(start+[1:cut],corr_mat(1:cut,i),'b'); 
    hold on 
    p2=plot(start+[cut+1:size(corr_mat,1)],corr_mat(cut+1:end,i),'r'); 
    tb1=regress(corr_mat(cut+1:end,i),[ones(size(corr_mat,1)-cut,1) 

[cut+1:size(corr_mat,1)]']); 
    tb2=regress(corr_mat(1:cut,i),[ones(cut,1) [1:cut]']); 
    

p3=plot(start+[cut+1:size(corr_mat,1)],tb1(1)+[cut+1:size(corr_mat,1)]'*tb1(2

)); 
    p4=plot(start+[1:cut],tb2(1)+[1:cut]'*tb2(2)); 
    set(gca,'XTick',[]); 
    set(p3,'Color','red','LineWidth',2); 
    set(p4,'Color','blue','LineWidth',2); 
    title(names(i)); 
    axis([1+start 1600+start -1 1]) 



Rajarshi Das 

50 
 

end 

  
plot(fetch(vix_d_ts, datestr(731672),[],datestr(734038),[],1,'d')) 

 

7.5. Extend Dataset via Regression 
%% Extend VX 
vix_d_ts=fints(datenum(VIX2{1}), VIX2{2}(:,4),'VIX'); 
cvx_d_ts=fints(datenum(CVX{1}), CVX{2}, 'VX'); 
combined=merge(vix_d_ts, cvx_d_ts, 'DateSetMethod', 'intersection', 

'SortColumns', 0); 

  
temp=fts2mat(combined); 
tp=regstats(temp(:,2),temp(:,1)); 
cvx_d_ts=tp.beta(1)+tp.beta(2)*vix_d_ts; 
cvx_d_ts=chfield(cvx_d_ts, 'VIX', 'VX'); 
% Jan 01, 1990 to July 15, 2011 

  
[tp.beta(1) tp.beta(2) tp.adjrsquare] 
[tp.tstat.t(1) tp.tstat.t(2)] 

  

 

7.6. VIX Term Structure Analysis 
%% VIX futures 

  
vxx_d_ts=fints(datenum(VXX{1}), VXX{2}(:,2), 'VXX'); 
vxz_d_ts=fints(datenum(VXZ{1}), VXZ{2}(:,2), 'VXZ'); 

  
% Figure 5 - futures- contango & backwardation 
tp=[7   28.85   31.85; 
    6   28.7    32.05; 
    5   28.5    32.15; 
    4   29.3    32.51; 
    3   29.6    31.85; 
    2   29.1    32.6; 
    1   26.45   32.55; 
    0   25.56   35.54]; 
plot(tp(:,1), tp(:,2:3)) 

  
vix_d_ts=fints(datenum(VIX2{1}), VIX2{2}(:,4),'VIX'); 
vix=fts2mat(vix_d_ts); 
month=22; % days 

  
vix_mat=zeros(size(vix,1)-2*month, 3); 
total=0; 
for i=1:size(vix,1)-2*month 
    vix_mat(i,:)=[vix(i) vix(i+month)-vix(i) vix(i+2*month)-vix(i+month)]; 
    if vix(i+month)-vix(i)<0 
        total=total+1; 
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    end 
end 
total/(size(vix,1)-2*month) 

  
bins=zeros(2,2); 
count=zeros(2,1); 
tp=mean(vix_d_ts); 
for i=1:size(vix_mat,1) 
    if vix_mat(i,1)<tp.VIX 
        count(1)=count(1)+1; 
        bins(1,1)=bins(1,1)+vix_mat(i,2); 
        bins(1,2)=bins(1,2)+vix_mat(i,3); 
    else 
        count(2)=count(2)+1; 
        bins(2,1)=bins(2,1)+vix_mat(i,2); 
        bins(2,2)=bins(2,2)+vix_mat(i,3); 
    end 
end 
bins=bins./[count count]; 

  
bins=zeros(8,2); 
count=zeros(8,1); 
for i=1:size(vix_mat,1) 
    if vix_mat(i,1)<15 
        count(1)=count(1)+1; 
        bins(1,1)=bins(1,1)+vix_mat(i,2); 
        bins(1,2)=bins(1,2)+vix_mat(i,3); 
    elseif vix_mat(i,1)>=15 && vix_mat(i,1)<20 
        count(2)=count(2)+1; 
        bins(2,1)=bins(2,1)+vix_mat(i,2); 
        bins(2,2)=bins(2,2)+vix_mat(i,3); 
    elseif vix_mat(i,1)>=20 && vix_mat(i,1)<25 
        count(3)=count(3)+1; 
        bins(3,1)=bins(3,1)+vix_mat(i,2); 
        bins(3,2)=bins(3,2)+vix_mat(i,3); 
    elseif vix_mat(i,1)>=25 && vix_mat(i,1)<30 
        count(4)=count(4)+1; 
        bins(4,1)=bins(4,1)+vix_mat(i,2); 
        bins(4,2)=bins(4,2)+vix_mat(i,3); 
    elseif vix_mat(i,1)>=30 && vix_mat(i,1)<35 
        count(5)=count(5)+1; 
        bins(5,1)=bins(5,1)+vix_mat(i,2); 
        bins(5,2)=bins(5,2)+vix_mat(i,3); 
    elseif vix_mat(i,1)>=35 && vix_mat(i,1)<40 
        count(6)=count(6)+1; 
        bins(6,1)=bins(6,1)+vix_mat(i,2); 
        bins(6,2)=bins(6,2)+vix_mat(i,3); 
    elseif vix_mat(i,1)>=40 && vix_mat(i,1)<45 
        count(7)=count(7)+1; 
        bins(7,1)=bins(7,1)+vix_mat(i,2); 
        bins(7,2)=bins(7,2)+vix_mat(i,3); 
    else 
        count(8)=count(8)+1; 
        bins(8,1)=bins(8,1)+vix_mat(i,2); 
        bins(8,2)=bins(8,2)+vix_mat(i,3); 
    end 



Rajarshi Das 

52 
 

end 
bins=bins./[count count]; 

  

  
%figure 6 
subplot(1,2,1) 
scatter(vix_mat(:,1), vix_mat(:,2)) 
lsline 
%figure 7 
subplot(1,2,2) 
scatter(vix_mat(:,1), vix_mat(:,3)) 
lsline 

  
tp=regstats(vix_mat(:,1), vix_mat(:,2)); 
tp.beta 
tp.tstat.t 

  
tp=regstats(vix_mat(:,1), vix_mat(:,3)); 
tp.beta 
tp.tstat.t 

 

7.7. VIX Speed of Mean Reversion Analysis 
%% VIX speed of mean reversion - percentiles 
vix 
prctile(vix,10) 
mean(vix) 
prctile(vix,90) 

   
count=0; 
flag=0; 
clearvars tp; 
z=1; 
for i=1:size(vix,1) 
    if (vix(i)<prctile(vix,25) && (flag==0)) 
        count=i; 
        tp(z,1)=count; 
        flag=1; 
    end 
    if flag==1 
        if vix(i)>mean(vix) 
            flag=0; 
            tp(z,2)=i-count; 
            z=z+1; 
        end 
    end 
end 
mean(tp(:,2)) 

  
count=0; 
flag=0; 
clearvars tp; 
z=1; 
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for i=1:size(vix,1) 
    if (vix(i)>prctile(vix,95) && (flag==0)) 
        count=i; 
        tp(z,1)=count; 
        flag=1; 
    end 
    if flag==1 
        if vix(i)<mean(vix) 
            flag=0; 
            tp(z,2)=i-count; 
            z=z+1; 
        end 
    end 
end 
mean(tp(:,2)) 

  
%% VIX speed of mean reversion - events 

  
vxx_d_ts=fints(datenum(VXX{1}), VXX{2}(:,2), 'VXX'); 
vxz_d_ts=fints(datenum(VXZ{1}), VXZ{2}(:,2), 'VXZ'); 
plot([vxx_d_ts vxz_d_ts]) 
% Figure 8 

 
% Speed of mean reversion 2 
fetch(vix_d_ts, '12-Jan-2011',[],'15-Feb-2011',[],1,'d') 

  
vix=fts2mat(vix_d_ts, 1); 

  
dates=['07-May-2010'; 
    '24-Oct-2008'; 
    '08-Oct-1998'; 
    '17-Sep-2001'; 
    '30-Oct-1997'; 
    '23-Jul-2002';]; 

  
mr=size(6,3); 
for i=1:size(dates,1) 
    count=1; 
    start=find(vix==datenum(dates(i,:))); 
    while vix(start+count,2) > mean(vix(:,2)) 
        count=count+1; 
    end 
    mr(i,1)=vix(start,1); 
    mr(i,2)=count; 
    mr(i,3)=vix(start,2); 
end 

 

 


